メインコンテンツへジャンプ

Databricksワークスペースに組み込まれたガバナンス機能

November 8, 2023 ポール・ルームサチン・タクール による投稿 in 製品
Databricks Unity Catalogは 、組織がさまざまなデータとAI資産を安全に発見、アクセス、監視、コラボレーションできる統合ソリューションを提供することで、データとAIのガバナンスを簡素化します。 これにはテーブル、MLモデル、ファイル、関数が含まれ、最終的に生産性を高め、Lakehouse環境の可能性を最大限に引き出します。 本日、Unity CatalogがAWSとAzure上の新しいプレミアム・ワークスペースに事前設定され、アクセス可能になったことを発表できることを嬉しく思います。 この機能は、アカウントや地域ごとに順次展開されます。 詳しくは担当者にお問い合わせください。 Unityカタログで事前設定されたワークスペースの概要 ワークスペースにいくつかの新機能が追加されていることにお気づきでしょう。 ワークスペースは、Unityカタログへのアクセス設定済みで提供されます! アカウント管理者によるその後の有効化手順は必要ありません。 ワークスペースにちなんだ名前のカタログが見つかります(こ

HiveテーブルをUnityカタログにアップグレードする方法

このブログでは、Hiveメタストア(HMS)*テーブルをUnityカタログ(UC)にシームレスにアップグレードする方法を、アップグレードするHMSテーブルのバリエーションに応じて異なる方法を使用して、例を挙げて説明します。 *注: Hiveメタストアは、デフォルト、外部メタストア、またはAWS Glue Data Catalogでもかまいません。 簡略化のため、本書では"Hive メタストア" という用語を使用します。 詳細を説明する前に、アップグレードの手順を説明しよう。 評価 - このステップでは、アップグレード対象として特定された既存の HMS テーブルを評価し、アップグレードの適切なアプローチを決定します。 このステップについては、このブログで説明します。 作成 - このステップでは、メタストア、カタログ、スキーマ、ストレージ資格情報、外部ロケーションなど、必要なUCアセットを作成します。 詳細については、ドキュメント( AWS 、 Azure...

Databricksワークフローによるデータ分析のオーケストレーション

October 18, 2023 Matthew Kuehn による投稿 in プラットフォームブログ
翻訳:Saki Kitaoka. - Original Blog Link データドリブンな企業にとって、データアナリストはデータから洞察を引き出し、それを意味のある形で提示する上で重要な役割を担っています。しかし、多くのアナリストは、本番用のワークロードを自動化するために必要なデータオーケストレーションに精通していない可能性があります。アドホックなクエリをいくつか実行すれば、直前のレポート用に適切なデータを迅速に作成できますが、データチームは、さまざまな処理、変換、検証タスクを適切な順序で確実に実行する必要があります。適切なオーケストレーションが行われないと、データチームはパイプラインの監視、障害のトラブルシューティング、依存関係の管理ができなくなります。その結果、当初は即効性のある価値をビジネスにもたらしたアドホックなクエリセットが、それらを構築したアナリストにとって長期的な頭痛の種になってしまいます。 パイプラインの自動化とオーケストレーションは、データの規模が大きくなり、パイプラインの複雑さが増すにつれて

「推論テーブル」の発表: AIモデルのモニタリングと診断を簡素化

翻訳:Saki Kitaoka. - Original Blog Link AIモデルを導入してみたものの、実世界で予想外の結果が出たという経験はありませんか? モデルのモニタリングは、そのデプロイと同じくらい重要です。そこで、AIモデルのモニタリングと診断を簡素化するInference Tablesをご紹介します。Inference Tablesを使用すると、 Databricks Model Serving エンドポイントからの入力と予測を継続的にキャプチャし、Unity Catalog Delta Tableに記録することができます。その後、Lakehouse Monitoringなどの既存のデータツールを活用して、AIモデルを監視、デバッグ、最適化できます。 推論テーブルは、LakehouseプラットフォームでAIを実行する際に得られる価値の素晴らしい例です。複雑さやコストを追加することなく、デプロイされたすべてのモデルでモニタリングを有効にすることができます。これにより、問題を早期に検出し、再トレーニン

Databricksアセットバンドルのパブリックプレビューを発表:簡単にソフトウェア開発のベストプラクティスを適用可能に!

翻訳:Saki Kitaoka. - Original Blog Link Databricksアセットバンドル( Databricks Asset Bundles )が現在パブリックプレビューで利用可能になりました! 略して「バンドル」と呼ばれるこれらは、ソースコントロール、コードレビュー、テスト、継続的インテグレーションおよびデリバリー(CI/CD)を含む、ソフトウェアエンジニアリングのベストプラクティスの採用を容易にします。バンドルによって、データエンジニア、データサイエンティスト、およびMLエンジニアは、データ、分析、およびAIプロジェクトをソースファイルとして表現することができます。これらのソースファイルは、プロジェクトのエンドツーエンドの定義を提供し、Lakehouseにどのようにテストおよびデプロイされるべきかを含みます。この定義は、簡単に編集、テスト、およびデプロイすることができます。 テストとデプロイを自動化する CI/CDは、現代のソフトウェア開発において本質的であり、テストとデプロイを自動化