メインコンテンツへジャンプ
<
ページ 10
>

時系列予測ライブラリ Prophet と Spark との連携

1. 時系列予測と Prophet 時系列予測は、周期性や季節性変動がある事象に対して予測を行います。例えば、ある商品の毎月の売り上げを考えると、商品の特性で夏に売り上げが上がり、また、週末や休日前になると多く売れるなど、さまざまな季節性、周期性要因が売り上げに関与してきます。時系列予測では、こうした季節性、周期性要因をうまくモデル化することが求められます。 Prophet は、こうした時系列予測のためのオープンソースライブラリです。Facebook 社の Core Data Science チームが開発・リリースしており、年毎、週毎、日毎の周期性に加え、休日の影響などを考慮して非線形な傾向を持つ時系列データをシンプルにモデル化できるという特長があります。さらに、異常値や欠損データの扱いにも強く、また、人間が理解しやすいパラメタやドメイン知識などを加えることで、モデルの精度を向上させる機能も備えています。 Prophet は、R および Python で利用可能です。今回は、Python を使用した Prophe

Terraform による Databricks ワークスペースの環境構築(AWS 編)

September 29, 2021 Masahiko Kitamura による投稿 in チュートリアル
Databricks ワークスペースは、1 つの独立した Databricks 環境を提供します。 そのため、要件によっては複数のワークスペースを同時に作成・運用するケースもあります。 こうした状況では、Databricks ワークスペースを Code として管理(IaC)し、自動化することで運用がスムーズになります。 Databricks では、運用現場で求められる機能をツールとして提供する Labs Project の一環で、 Databricks Terraform Provider を公開しています。 このドキュメントでは、Terraform を用いて AWS 上に...

臨床データによる腫瘍学の知見抽出に NLP を活用

このブログで参照しているソリューションアクセラレータのノートブックは、 オンライン でご参照いただくか、ノートブックを ダウンロード してお使いの Databricks アカウントにインポートすることで、すぐにご利用いただけます。 米国における 死亡原因 および疾病原因の第 1 位は悪性腫瘍(がん)です。その数は驚異的で、今年、米国では新たに診断される がん患者は約 200 万人 になると予想されています。また、米国における医療費は、悪性腫瘍(がん)に関連するものが大部分を占めており、その額は、2020 年で 2,000 億ドルを超えると推定されています。このため、バイオ医薬品業界では、がん治療のための創薬に特に注力しています。2019 年、2020 年だけでも、FDA によって およそ...

データレイクハウスによるリアルタイムPOS分析

翻訳:Saki Kitaoka. Original Blog Link 製品供給の減少や倉庫のキャパシティの低下といったサプライチェーンの混乱に加え、 シームレスなオムニチャネル 体験に対する消費者の期待が急速に変化していることから、小売企業は自社のオペレーションを管理するためのデータ活用方法を見直す必要に迫られています。 パンデミック(世界的大流行)以前は、 小売企業の71% が、オムニチャネル目標を達成するための最大の障害として、在庫のリアルタイム可視性の欠如を挙げていました。パンデミックは、 オンラインと店舗を統合したエクスペリエンスへの需要を高める だけでなく、正確な商品の在庫状況を提示し、注文の変更を即座に管理しなければならないというプレッシャーを小売企業に与えることになりました。 リアルタイムの情報 へのアクセスを向上させることが、新たな時代の消費者の要求に応える鍵となります。 このブログでは、小売業におけるリアルタイムデータの必要性と、POSデータのリアルタイムストリーミングをデータレイクハウスで大

外部から Databricks 上の MLflow を使用する

September 2, 2021 Masahiko Kitamura による投稿 in チュートリアル
MLOps を効果的に実施するためのフレームワークである MLFlow はあらゆる環境での機械学習を一元的に管理することが可能です。Databricks ではこの MLflow をマネージドサービスとして提供しており、Databricks 上での機械学習はもちろん、Databricks 環境以外での機械学習についても連携することが可能です。 この記事では、 Databricks の外部環境(ローカル PC 上など)からワークスペース内の MLflow を使用する方法について説明します。 以下のステップで実行していきます Databricks ワークスペースに MLflow の experiment を作成する...

データレイクで増分 ETL のメリットを活かす - CDC の課題など

August 30, 2021 John O'Dwyer による投稿 in データエンジニアリング
従来のデータウェアハウスでの増分 ETL といえば、CDC(change data capture、変更データキャプチャ)を利用する方法が一般的になっています。しかし、スケーラビリティ、コスト、状態の把握や機械学習との連携が困難であることなどの問題があり、この CDC により増分 ETL を実行する方法は、必ずしも理想的とはいえません。一方、データレイクでの増分 ETL は、これまで、ビッグデータのテーブルのデータ更新や変更データの特定ができないといった理由により不可能とされてきました。しかし今日、データレイクで増分 ETL を利用することが可能になりました!増分 ETL には多くのメリットがあります。効率性やシンプルさ、データサイエンティストやデータアナリストのどちらも利用できる柔軟なデータアーキテクチャの構築などが挙げられます。このブログでは、データレイクで増分 ETL を使用するメリットと、それをサポートするデータアーキテクチャについて解説します。 増分 ETL とは? まず、増分 ETL とは何かを明らか

BI ツールの広帯域接続を実現するには

Tableau や Microsoft Power BI などのビジネスインテリジェンス(BI)ツールは、従来のデータウェアハウスから大規模なクエリ結果を抽出するのに多くの時間を要することで知られています。これは、通常、データ転送のボトルネックとなる SQL エンドポイントを介してシングルスレッドでデータを取得するためです。Databricks の SQL エンドポイントに使用している BI ツールを接続することで、データアナリストは、Simba ドライバに統合された ODBC/JDBC プロトコルを介してテーブルのデータのクエリを実行できます。また、Databricks ランタイム 8.3 および Simba ODBC 2.6.17 ドライバでリリースした...

Delta Lake で機械学習の課題を解決

既存のデータレイクファイルストレージ上に構築されるオープンソースのストレージレイヤーである Delta Lake や機械学習の開発で使用される MLflow が話題に上る機会が増えています。しかし、多くのケースでは 2 つが別々の製品として取り上げられています。本ブログでは、機械学習の開発の際に起こりうるデータのバージョン管理や OOM エラーなどの課題において Delta Lake と MLflow の相乗効果に焦点を当て、堅牢なデータ基盤に基づく有用な機械学習結果を得るために Delta Lake をいかに活用すべきかについて解説します。 データサイエンティストであれば、機械学習のモデル作成のプロセスは既に整っており、MLflow を機械学習モデルの本番環境へのデプロイに活用したことがあるでしょう。MLflow には、実験を追跡できる機能や、モデルのプロモーションに活用できる MLflow モデルレジストリが備わっています。また、コードのバージョン、クラスタのセットアップ、データの場所などの追跡機能による再現

最新の Data Lakehouse で健康データの力を解き放つ

患者 1 人に対して 年間およそ 80 MB の医療データ が生成されるといわれています。数千人規模の患者の生涯に換算すると、貴重な知見の源となるペタバイト級の患者データが生成されることになります。膨大なデータから知見を抽出することで、臨床業務の効率化、創薬研究の加速、患者の転帰の改善が図れます。これを可能にするためには、データを収集するだけでなく、準備段階として、データの前処理が必要です。ダウンストリームの分析や AI で利用できるよう、収集したデータのクリーニングや構造化を行います。ヘルスケア・ライフサイエンス組織のほとんどが、この準備段階に多大な時間を消費しているのが実情です。 業界におけるデータ分析の課題 ヘルスケア・ライフサイエンス業界の組織が抱える、データ準備、分析、AI における課題には数多くの理由が存在しますが、そのほとんどは、データウェアハウス(DWH)上に構築されたレガシーなデータアーキテクチャへの投資に関係するものです。この業界における 4 つの主要な課題は次のとおりです。 課題 1 - ボ

AI と機械学習のための大規模な特徴量エンジニアリング

July 16, 2021 Li YuDaniel Tomes による投稿 in エンジニアリングのブログ
特徴量エンジニアリングは、機械学習のプロセスの中で最も重要なステップの 1 つであり、多くの時間を要します。データサイエンティストやアナリストは、さまざまな特徴量を組み合わせた実験を重ねてモデルを改善し、ビジネスに有益な情報を提供する BI レポートの作成を目指します。そのような状況下で、データサイエンティストが扱うデータの規模および複雑さが増大し、次のような事柄が課題となっています。 特徴量をシンプルかつ一貫性のある方法で定義すること 既存の特徴量の識別と再利用 既存の特徴量を利用した拡張 特徴量やモデルのバージョン管理 特徴量定義のライフサイクルの管理 特徴量の計算と保存の効率化 大規模テーブル(>1000 列)の効率的な計算と永続化 意思決定につながるモデルのもとになった特徴量の再現(例:監査や解釈可能性などの実証) このブログでは、大規模データの特徴量を生成する際のデザインパターンについて解説します。また、デザインパターンのリファレンス実装をダウンロード可能な Notebook で提供し、ファースト