メインコンテンツへジャンプ
<
ページ 8
>

レイクハウス・モニタリング: データとAIの品質監視のための統合ソリューション

はじめに Databricks Lakehouse Monitoring (レイクハウス・モニタリング)を使用すると、データからフィーチャー、MLモデルまで、すべてのデータパイプラインを追加のツールや複雑な操作なしに監視できます。 Unity Catalog に組み込まれているため、ガバナンスと並行して品質を追跡し、データとAI資産のパフォーマンスについて深い洞察を得ることができます。Lakehouse Monitoringは完全にサーバーレスなので、インフラストラクチャやコンピュート構成のチューニングを心配する必要はありません。 Lakehouseのモニタリングに対する統一されたアプローチにより、 Databricks Data Intelligence Platform で直接、品質の追跡、エラーの診断、ソリューションの検索が簡単に行えます。Lakehouse Monitoringを最大限に活用する方法を本記事ではご紹介します。 なぜレイクハウス・モニタリングなのか? データパイプラインは順調に動いているよう

ファウンデーションモデル機能でGenAIアプリをより速く構築する方法

先週 発表した RAG( Retrieval Augmented Generation )に続き、Model Servingのメジャーアップデートを発表できることを嬉しく思います。Databricks Model Servingは 統一されたインターフェイス を提供するようになり、すべてのクラウドとプロバイダで基盤モデルの実験、カスタマイズ、プロダクション化が容易になりました。これは、組織固有のデータを安全に活用しながら、ユースケースに最適なモデルを使用して高品質のGenAIアプリを作成できることを意味します。 新しい統一インターフェースにより、Databricks上であろうと外部でホストされていようと、すべてのモデルを一箇所で管理し、単一のAPIでクエリすることができます。さらに、Llama2 や MPT モデルなどの一般的な大規模言語モデル (LLM) に Databricks 内から直接アクセスできる Foundation Model API...

リアルタイムの構造化データでRAGアプリケーションの応答品質を向上

Retrieval Augmented Generation(RAG )は、Gen AIアプリケーションのコンテキストとして関連データを提供する効率的なメカニズムです。 ほとんどのRAGアプリケーションは、通常、ドキュメントやWiki、サポートチケットなどの非構造化データから関連するコンテキストを検索するためにベクトルインデックスを使用します。 昨日、私たちはDatabricks Vector Search Public Previewを発表しました。 しかし、これらのテキストベースのコンテキストを、関連性のあるパーソナライズされた構造化データで補強することで、Gen AIの応答品質をさらに向上させることができます。 小売業のウェブサイトで、顧客が"最近の注文はどこですか?" と問い合わせる、Gen AIツールを想像してみてください。 このAIは、クエリが特定の購買に関するものであることを理解し、LLMを使用して応答を生成する前に、注文品目の最新の出荷情報を収集しなければなりません。 このようなスケーラブルなアプ

Databricks Vector Search パブリックプレビューのご紹介

昨日 発表した RAG(Retrieval Augmented Generation )に続き、本日、Databricks Vector Searchのパブリックプレビューを発表します。6月に開催されたData + AI Summitでは、限られたお客様を対象としたプライベートプレビューを発表しましたが、今回はすべてのお客様にご利用いただけるようになりました。Databricks Vector Searchは、PDF、Officeドキュメント、Wikiなどの非構造化ドキュメントに対する類似検索を通じて、開発者がRAG(Retrieval Augmented Generation)や生成AIアプリケーションの精度を向上させることを可能にします。Vector Search は Databricks Data Intelligence Platform の一部であり、RAG およびジェネレーティブ...

Databricksで高品質のRAGアプリケーションを作成する

RAG(Retrieval-Augmented-Generation )は、独自のリアルタイムデータを LLM(Large Language Model) アプリケーションに組み込む強力な方法として、急速に台頭してきた。 本日Databricksユーザーが企業データを使用して高品質な本番LLMアプリケーションを構築するためのRAGツール群を発表できることを嬉しく思う。 LLMは、新しいアプリケーションを迅速にプロトタイプ化する能力において、大きなブレークスルーをもたらした。 しかし、RAGアプリケーションを構築している何千もの企業と仕事をした結果、彼らの最大の課題は、これらのアプリケーションを 本番で用いることができる品質にすること であることがわかった。 顧客向けアプリケーションに要求される品質基準を満たすためには、AIの出力は正確で、最新で、そして企業のコンテキストを認識し、安全でなければならない。 高品質なRAGアプリケーションを構築するためには、開発者はデータとモデル出力の品質を理解するための豊富なツール