メインコンテンツへジャンプ
<
ページ 6
>

Databricks Marketplace for Retailersで数ヶ月から数時間へ

翻訳:Junichi Maruyama. - Original Blog Link 例えば、ある流通業者が、コンビニエンスストアの顧客から炭酸飲料が売れている要因を把握したいと考えたとしよう。従来であれば、コンビニエンスストアの顧客に接触してPOSデータを入手し、追加のパートナーと協力して天候データを取得し、自社の出荷やプロモーション・データとの統合を開発する必要があった。この単純な分析を可能にするには、データエンジニアリングに数週間を要する。 Databricks Marketplaceの発表により、このような分析が数時間でできるようになりました。企業は今、次のことができる: 消費に関する優れた指標である PredictHQ の local event data でソースをリッチ化することで、洞察を得るまでの時間を短縮します アキュウェザー(Accuweather)の履歴および予測気象データ をシームレスに統合して、傾向をよりよく理解し、顧客体験を調整する 40以上の小売業者のPOSソース にアクセスし、在庫と

レイクハウスで顧客生涯価値を見積もる

翻訳:Junichi Maruyama. - Original Blog Link スニル・グプタ博士は『 Driving Digital Strategy 』の中で、「20%の顧客が利益の200%を占めている」と指摘している。この数字が意味するところは、一部の顧客は、その顧客から得られる利益よりも、それ以上にコストがかかっているということである。正確な比率はビジネスによって異なるかもしれないが、小売企業や消費財企業は、価値の高い顧客を特定し、その顧客と長期的な関係を築き、そのような顧客を増やす一方で、リターンが見込めない顧客への投資を抑えることが極めて重要である。 課題は、特定の顧客の潜在的な収益性が常にわかっているわけではないということである。非サブスクリプション・モデルでは、顧客の出入りは自由であるため、ある瞬間にはハイパフォーマンスな顧客としての可能性を示し、次の瞬間には姿を消して二度と戻ってこないかもしれない。しかし、全体として見れば、顧客の取引に関連する頻度、頻度、金額(消費額)には比較的予測可能なパ

Databricks Lakehouseでクレジットデータプラットフォームを構築する方法

July 5, 2023 Nuwan GanganathBoris BanushevRicardo Portilla による投稿 in 業界
翻訳:Junichi Maruyama. - Original Blog Link dbdemos.aiのデモ をご覧になり、ビジネスのためのクレジットデータプラットフォームを構築してください。 はじめに 世界銀行の金融包摂に関する報告 によると、なんと17億人もの成人が銀行口座を持たないとされている。銀行口座を持たない個人の多くは、伝統的な金融機関から融資を受けることが難しく、法外な金利で融資を行うインフォーマルな金融業者に頼ることになる。このグループには通常、若い世代、発展途上国の低所得者、農村部の住民が含まれ、その多くは金融サービスへのアクセスを得るために移動している。 銀行口座を持たない人々に関して言えば、モバイル・バンキングは通常、伝統的な銀行業務が弱いと思われている地域の消費者ニーズを満たすために参入してきました。世界中のスマートフォンのユーザー数は、過去5年間一貫して毎年最低5%ずつ増加しており、融資にとって新たな有望な機会をもたらしています。金融機関は、機械学習やその他の高度な分析を活用して顧客の

DatabricksのLakehouseがTD銀行グループのデータ・トランスフォーメーションの新時代をどのように支えているか

June 23, 2023 Satish NarayananJon HollanderPaul WellmanJohn Lynch による投稿 in 業界
このブログは、TD Bankのデータ・プラットフォーム変革およびDaaS(Data as a Service)組織の実現に関する3回シリーズの第1回です。Satish Narayanan氏、Paul Wellman氏、Jon Hollander氏に感謝します。 翻訳:Saki Kitaoka. Original Blog Link TDでは、組織全体で信頼できるデータを保護し、活用することの重要性を認識しています。データはTDを「より良い銀行」にするために不可欠なものであり、お客様をサポートするために有意義な洞察とインパクトを生み出すデータの育成に注力しています。このようなデータの管理、処理、分析、対処は、しばしば複雑で時間のかかるものでした。今日の環境では、お客様のニーズや刻々と変化する市場の需要に対応するため、リアルタイムの意思決定と洞察が求められています。 規制当局からの圧力や顧客からの要求の高まりにより、すべての組織はデータの管理と正確性をより厳しく管理する必要に迫られています。最近では、データの可用性を

ヘルスケアの未来はデータコラボレーションにかかっている:IQVIAとDatabricks Lakehouseでどのようにより良いアウトカムが実現されるか

June 22, 2023 Bill ZanineMichael Sankyアダム・クラウン による投稿 in 業界
Original Blog: The future of healthcare relies on data collaboration: how IQVIA and the Databricks Lakehouse enable better outcomes 翻訳: motokazu.ishikawa ヘルスケアデータを取り込み、統合し、共有する能力は、新たなイノベーションを推進し、医学研究を進め、患者のアウトカムを改善する上で基礎的な役割を果たします。世界中のすべての人が毎年約270 GBものヘルスケアおよびライフサイエンス・データを生成すると予想される中[...

コミュニケーションにおける大規模言語モデル

June 12, 2023 ブライアン・サフトラーSteve Sobel による投稿 in 業界
Original: Large Language Models in Communications 翻訳: junichi.maruyama 通信業界は、ユーティリティから付加価値サービスプロバイダーへの変革期を迎えており、データとAIは、より良い消費者、ネットワーク、パートナー体験を提供する中核となっています。データとAIが効率的な成長のために利用されているこの時代、Large Language Models(LLM)は、通信サービスプロバイダーに大きな影響を与えるゲームチェンジ技術として浮上しています。LLMを活用することで、通信プロバイダーは、パーソナライズされた体験、コスト効率の高いネットワークの最適化、より自動化されたカスタマーサポートなど、いくつかの重要な分野で独自の課題に取り組み、新しい機会を生かすことができます: パーソナライズドエクスペリエンスを変革する 消費者が電話やインターネットなどの通信サービスを利用する際に、これまで以上に選択肢が増える中、通信事業者にとって、解約を抑制し、いつでもあらゆ

Generative AI is Everything Everywhere, All at Once

Original: Generative AI is Everything Everywhere, All at Once 翻訳: saki.kitaoka Data and AI Summit on "Generation AI "に直接またはバーチャルで参加し、詳細をご確認ください。 変化の激しい金融の世界では、企業は自動化の促進、製品イノベーションの加速、業務効率の改善を通じて競争力を維持する方法を常に模索しています。金融サービス機関(FSI)の自動化、合理化、効率化を支援する上で、Generative AIが重要な役割を果たすとエグゼクティブは考えています。FSIは、膨大な量のデータを分析し、人間の知性を補強する洞察を提供するために、AI機能への投資を開始しています。例えば、ブルームバーグは最近、金融業界向けに特別に構築された500億パラメータの大規模言語モデル(LLM)「 Bloomberg-GPT 」を発表し、JPモルガンはChat-GPTベースの言語AIモデルを使用して、...

サイバーセキュリティアプリケーション向けDatabricks Lakehouseプラットフォーム

翻訳: Masahiko Kitamura 具体的なコードはIOCマッチングのソリューションアクセラレータの GitHub reo を参照ください。また、本ソリューションのPOC・トライアルについては [email protected] までご連絡ください。 金融機関、医療機関、政府機関がデータをクラウドに移行し、IoTセンサーや相互接続されたデバイスが増加しているため、サイバーセキュリティは依然として重要なデータ課題となっています。地政学的な脅威が続く中、企業は、大量のデータの処理、複雑なデータ処理タスク(人工知能や機械学習などの高度な分析機能を含む)のサポート、費用対効果の高い拡張が可能なDatabricks Lakehouseプラットフォームをサイバー業務に採用しています。Databricks Lakehouseプラットフォームは、データ、アナリティクス、AIを単一のプラットフォームで統合した、サイバーセキュリティ業界の隠れた標準基盤になっています。 企業やサイバーセキュリティベンダー

メディア&エンターテインメントにおける大規模言語モデル

June 6, 2023 ブライアン・サフトラーSteve Sobel による投稿 in 業界
Original: Large Language Models in Media & Entertainment 翻訳: junichi.maruyama メディア&エンターテインメント業界は、データを中心とした革命の真っ只中にあり、消費者をあらゆる体験の中心に据えています。あらゆる規模の組織が、パーソナライズされた1:1体験を大規模に提供する次の破壊的イノベーションを実現するために、今、探求を続けています。特に、あるテクノロジーは、このゲームを根本的に変える力を持っています: ラージ・ランゲージ・モデル(LLM)です。LLMは、ユニークなコンテンツを生成するだけでなく、複雑な情報を深く理解し、人間のような対話をシミュレートする力を備えています。このブログでは、パーソナライゼーション、マネタイズ、コンテンツ制作という3つの主要分野におけるLLMの変革の可能性について説明します。これにより、メディアやエンターテインメント業界のデータおよびAIリーダーは、現実の世界にインパクトを与え、新しい収益源を開拓するこ

Databricks Marketplaceのパワーをメディアとエンターテイメントに解放する - featuring LiveRamp

June 5, 2023 ブライアン・サフトラー による投稿 in 業界
Original: Unleashing the Power of the Databricks Marketplace for Media and Entertainment - featuring LiveRamp 翻訳: junichi.maruyama 今日のデータ主導の状況において、企業はデータを統合し、オーディエンスのプロフィールを豊かにする有意義なインサイトを導き出すという課題に直面しています。従来のデータ統合手法では、複雑さや非効率さを招き、うまくいかないことも少なくありません。しかし、新しい Databricks Marketplace で利用できる主要なデータ連携プラットフォームであるLiveRampと、Databricks Lakehouseの変革的な機能により、組織はデータ集約を簡素化し、データセット間のオーディエンスを容易に結びつけることができます。 データアグリゲーションへの挑戦...