メインコンテンツへジャンプ
<
ページ 7
>

Veritas: Datavant on Databricks を通じて現実世界のデータを提供

March 7, 2024 ジェイソン・ラボンテ による投稿 in 業界
この投稿は、Veritas Data Researchの最高経営責任者のジェイソン・ラボンテ氏との共同執筆によるものです。 ヘルスケアとライフサイエンスの領域では、データは医学のブレークスルーを推進し、患者の転帰を改善するための要となっています。 適切な実世界のデータソースを活用することで、医療、研究、製薬組織全体のイノベーションを促進することができます。 ガートナー社 によると、外部データ共有に取り組んでいるデータとアナリティクスのリーダーは、そうでないリーダーに比べて、測定可能な経済的利益を3倍多く生み出すことができます。 死亡率データの重要な役割 死亡率データは、治療の有効性、公衆衛生政策、プロトコルの設計に関する深い洞察を提供する、健康分析における重要な基礎です。 しかし、保険請求や電子カルテのような従来の臨床データセットでは、このような重要なエンドポイントを捉えることは困難です。 このギャップから、患者の転帰を正確に理解するためには、臨床実データ(RWD)を死亡率データセットで補強する必要があります。

KXとDatabricksの統合:資本市場などにおける時系列データ分析の進歩

KXとDatabricksは、資本市場分野向けの時系列分析ソリューションの開発で提携し、クオンツ調査や一時的な取引データ分析など、多くのユースケースをサポートしています。 これまで、SQL、Python、Rなどのデータサイエンスや分析のプログラミング言語では、時系列分析が煩雑で時間がかかっていました。 SQLはその人気と強力なクエリ言語にもかかわらず、時系列データの順序(例えば、時間ベースの結合)や以前の状態に関する質問には限界があります。 PythonやR、そしてSparkでさえ、時間分析を実行するには何ページものコードが必要です。 これらの限界は、時系列分析に伴う高次元データの課題によってさらに複雑になっています。 特にヘッジファンドや機関投資家にとって、このコラボレーションは、KXの専門的な時系列データ処理能力と、Databricksで利用可能な包括的な計算および機械学習フレームワークを組み合わせたものです。 このパートナーシップは、時系列データに焦点を当てることで、金融業界向けの定量的・データサイエンス研

大規模言語モデルを用いて常識に沿った商品レコメンデーションを行う

詳細とノートブックのダウンロードについては、 LLM Solution Accelerators for Retail をご覧ください。 商品の推薦(レコメンデーション)は、現代の顧客体験の中核をなす機能です。 ユーザーは以前利用したことのあるサイトに戻ったとき、以前の利用内容に関連するレコメンデーションが表示されることを期待します。 ユーザーが特定のアイテムに興味を持ったとき、類似した関連性のある代替品が提案され、自分のニーズに合ったアイテムを見つけられることを期待します。 また、商品がカートに入れられると、ユーザーは、全体的な購買体験を完成かつ向上させる追加の商品がレコメンドされることを期待します。 このような商品のレコメンデーションが適切に行われれば、買い物がスムーズになるだけでなく、ユーザーは小売店によって認識され、理解されていると感じることができます。 商品のレコメンデーションを生成するための様々なアプローチがありますが、現在使用されているレコメンデーションエンジンのほとんどは、小売業者固有の大規模なデ

Coastal Community Bank、Databricksのデータインテリジェンスプラットフォームを用いて充実した金融エコシステムを構築

March 4, 2024 Giselle Goicocheaアンナ・キュイジア による投稿 in 業界
Coastal Community Bank(Coastal)のSVP、Head of Technology Operations and ImplementationのBarb MacLean氏とCavallo TechnologiesのRob Cavallo社長に感謝します。 ゴリアテのコミュニティ・バンクとして繁栄 ある意味で、コミュニティ・バンクであることがこれほど厳しくなったことはありません。 米国では現在、上位15行が業界の預金と資産の大半を支配しており、大手5行で 総資産の56 % を管理しています。 さらに、中小銀行に対する規制上の要求も高まっており、大手の競争相手と同じような厳しい資本、報告、マネーロンダリング防止基準に従うことが求められています。 Coastal Community Bank(Coastal)のSVP、テクノロジー・オペレーションおよびインプリメンテーションの責任者であるBarb MacLean氏にとって、その解決策はサービスとしての銀行(BaaS)です。 CoastalがDe

よりスマートな製造:生成AIの合理化におけるガバナンスの役割

人工知能(AI)は、企業が生産し、顧客が接するあらゆる製品やサービスに組み込まれるようになるでしょう。 生成AIによって、私たちは今、あらゆる企業の競争優位に貢献するデータ & AIイニシアチブへの期待が高まる時代に突入しています。 データガバナンスは、企業が競争上の優位性を生み出し、それを維持するために成功するためには、絶対に欠かせないものです。 今日のダイナミックな状況において、データガバナンスの重要性を見過ごすことはできません。 なぜかというと、優れたAIは優れたデータから生まれるからです。 適切なガバナンスがなければ、良いデータを確保することはできません。 しかし、データガバナンスには大きな問題があります。 「プリンセス・ブライド」で有名なハリウッドのキャラクター、イニゴ・モントーヤから引用します。「データガバナンス...。あなたはこの言葉を使い続けています。 私は、それはあなたが思っているような意味ではないと思います!」。これは、データガバナンスという用語があまりに不定形になりすぎて、それが何な