Skip to main content

DevOps Essentials for Data Engineering

This course explores software engineering best practices and DevOps principles, specifically designed for data engineers working with Databricks. Participants will build a strong foundation in key topics such as code quality, version control, documentation, and testing. The course emphasizes DevOps, covering core components, benefits, and the role of continuous integration and delivery (CI/CD) in optimizing data engineering workflows.

You will learn how to apply modularity principles in PySpark to create reusable components and structure code efficiently. Hands-on experience includes designing and implementing unit tests for PySpark functions using the pytest framework, followed by integration testing for Databricks data pipelines with DLT and Workflows to ensure reliability.

The course also covers essential Git operations within Databricks, including using Databricks Git Folders to integrate continuous integration practices. Finally, you will take a high level look at various deployment methods for Databricks assets, such as REST API, CLI, SDK, and Databricks Asset Bundles (DABs), providing you with the knowledge of techniques to deploy and manage your pipelines.

By the end of the course, you will be proficient in software engineering and DevOps best practices, enabling you to build scalable, maintainable, and efficient data engineering solutions.

Skill Level
Associate
Duration
3h
Prerequisites

- Proficient knowledge of the Databricks platform, including experience with Databricks Workspaces, Apache Spark, Delta Lake and the Medallion Architecture, Unity Catalog, Delta Live Tables, and Workflows. A basic understanding of Git version control is also required.
- Experience ingesting and transforming data, with proficiency in PySpark for data processing and DataFrame manipulations. Additionally, candidates should have experience writing intermediate level SQL queries for data analysis and transformation.
- Knowledge of Python programming, with proficiency in writing intermediate level Python code, including the ability to design and implement functions and classes. Users should also be skilled in creating, importing, and effectively utilizing Python packages.

Self-Paced

Custom-fit learning paths for data, analytics, and AI roles and career paths through on-demand videos

See all our registration options

Registration options

Databricks has a delivery method for wherever you are on your learning journey

Runtime

Self-Paced

Custom-fit learning paths for data, analytics, and AI roles and career paths through on-demand videos

Register now

Instructors

Instructor-Led

Public and private courses taught by expert instructors across half-day to two-day courses

Register now

Learning

Blended Learning

Self-paced and weekly instructor-led sessions for every style of learner to optimize course completion and knowledge retention. Go to Subscriptions Catalog tab to purchase

Purchase now

Scale

Skills@Scale

Comprehensive training offering for large scale customers that includes learning elements for every style of learning. Inquire with your account executive for details

Upcoming Public Classes

Data Engineer

Automated Deployment with Databricks Asset Bundles

This course provides a comprehensive review of DevOps principles and their application to Databricks projects. It begins with an overview of core DevOps, DataOps, continuous integration (CI), continuous deployment (CD), and testing, and explores how these principles can be applied to data engineering pipelines.

The course then focuses on continuous deployment within the CI/CD process, examining tools like the Databricks REST API, SDK, and CLI for project deployment. You will learn about Databricks Asset Bundles (DABs) and how they fit into the CI/CD process. You’ll dive into their key components, folder structure, and how they streamline deployment across various target environments in Databricks. You will also learn how to add variables, modify, validate, deploy, and execute Databricks Asset Bundles for multiple environments with different configurations using the Databricks CLI.

Finally, the course introduces Visual Studio Code as an Interactive Development Environment (IDE) for building, testing, and deploying Databricks Asset Bundles locally, optimizing your development process. The course concludes with an introduction to automating deployment pipelines using GitHub Actions to enhance the CI/CD workflow with Databricks Asset Bundles.

By the end of this course, you will be equipped to automate Databricks project deployments with Databricks Asset Bundles, improving efficiency through DevOps practices.

Paid & Subscription
3h
Lab
Professional

Questions?

If you have any questions, please refer to our Frequently Asked Questions page.