メインコンテンツへジャンプ
<
ページ 20
>

クラウドスケールでのサイバーセキュリティのためのSIEMの強化

翻訳: Masahiko Kitamura オリジナル記事: Augment Your SIEM for Cybersecurity at Cloud Scale この10年間で、セキュリティインシデント・イベント管理ツール(SIEM)は、企業のセキュリティ運用における標準的なものとなっています。しかし、SIEMには常に否定的な意見もあります。しかし、クラウドが爆発的に普及したことで、「クラウドスケールの世界ではSIEMは正しい戦略なのか?HSBCのセキュリティ・リーダーは、そう考えていません。HSBCは、最近の講演 「サイバーセキュリティのためのDatabricks LakehouseでSplunkやその他のSIEMを強化する」 で、レガシーSIEMの限界とDatabricks Lakehouseプラットフォームがサイバーセキュリティをどのように変革しているかを強調しました。3兆ドルの資産を持つHSBCの話は、少し調べてみる価値がありそうです。 このブログでは、変化するITとサイバー攻撃の脅威の状況、SIEMの

公開プレビュー:Databricks ジョブによる複数タスクのオーケストレーション

ドキュメントを読む 企業におけるビジネスインテリジェンス(BI)や、人工知能(AI)への取り組みの強化に伴い、シンプルで明確かつ信頼性の高いデータ処理タスクの オーケストレーション へのニーズが高まっています。Databricks のユーザーの選択肢はこれまで、複数のタスクを1つの Notebook で実行する、もしくは、別のワークフローのツールを使用して、ユーザーの環境全体をさらに複雑にするしかありませんでした。 本日、私たちは、タスクのオーケストレーションをサポートする Databricks ジョブのパブリックプレビューを発表しました。この機能により、複数タスクを有向非巡回グラフ(DAG)として実行することが可能になります。ジョブとは、Databricks のクラスタでアプリケーションを実行する非インタラクティブな方法です。例えば、ETL ジョブやデータ分析タスクをすぐに実行したり、スケジュールを設定して実行したりします。このジョブ内で複数のタスクをオーケストレーションする機能は、追加のコストは不要で、データ

Databricksのファイルシステム

June 17, 2021 Takaaki Yayoi による投稿 in ソリューション
こちら からサンプルノートブックをダウンロードできます。 Databricksでファイルを取り扱う際には、Databricks File System (DBFS) を理解する必要があります。 本記事では、DBFSの概要をご説明するとともに、具体的な使用例をご説明します。 Databricks File System (DBFS) Databricks File System (DBFS) はDatabricksのワークスペースにマウントされる分散ファイルシステムです。Databricksクラスターから利用することができます。DBFSはクラウドのオブジェクトストレージを抽象化するものであり、以下のメリットをもたらします: オブジェクトストレージ(S3/Azure Blob Storageなど)追加の認証情報なしにオブジェクトストレージにアクセスすることができます。 ストレージURLではなく、ディレクトリ、ファイルの文法に従ってファイルにアクセスできます。 ファイルはオブジェクトストレージで永続化されるので、クラス

機械学習を活用した小売業者・ブランドのためのアイテムマッチング

アイテムマッチングは、オンラインマーケットプレイスの中核的な機能です。小売業者は、最適化された顧客エクスペリエンスを提供すべく、新規/更新された商品情報を既存のリストと比較して、一貫性を確保し、重複を回避します。また、オンライン小売業者は、競合他社のリストと比較して、価格やインベントリの差異を確認します。複数のサイトで商品を提供しているサプライヤーでは、商品がどのように提示されているかを調べて、自社の基準との整合性を確保できます。 効果的なアイテムマッチングの必要性は、オンランコマースに限られたことではありません。DSR(デマンドシグナルリポジトリ)は、数十年もの間、補充オーダーのデータに POS やシンジゲートされた市場データを組み合わせて、消費財メーカーに需要の全体を把握するケイパビリティを提供してきました。しかし、メーカーが自社の製品定義と、数十もの小売店パートナーの製品説明との間の差異を埋めることができなければ、DSR の価値は制限されます。 このようなタイプのデータをまとめる際の課題は、異なるデータの照

Databricks on Google Cloud を 発表しました

February 17, 2021 Hiral Jasani による投稿 in お知らせ
Databricksはこのたび、Databricks on Google Cloudの提供を開始しました。このDatabricksとGoogle Cloudの共同開発によるサービスは、データエンジニアリング、データサイエンス、分析、機械学習のためのシンプルでオープンなレイクハウスプラットフォームを提供し、これにより、Databricksのケイパビリティと、Google Cloudが提供するデータ分析ソリューションとグローバルなスケーリングの融合が実現します。 オープンなクラウドとデータプラットフォームの融合 DatabricksとGoogle Cloudの共通のビジョンは、オープンスタンダード、オープンAPI、オープンインフラを基盤とするオープンデータプラットフォームです。このパートナーシップは、企業におけるさまざまな選択と柔軟性を可能にし、クラウドおよびオンプレミス環境の双方において、必要なツールを用いたインフラ管理、データアクセスができるようになります。また、オープンなフレームワークやAPIの導入は、マネージ

データブリックスとアクセンチュアの連携で大規模な機械学習の運用を効率化

February 1, 2021 Jim GreggAtish Ray による投稿 in パートナー
データブリックスはこのたび、アクセンチュアとのパートナーシップを発表しました。このパートナーシップを通じて世界中のエンタープライズ企業に、私たちのサービスと再利用可能なコンポーネントを提供できることが期待されています。また、データ戦略、データ設計、データプラットフォームの最新化、および AI を専門とするアクセンチュアのデータ・AI 部門は、データブリックスの統合データ分析プラットフォームを活用し、これまでに実証された手法を、機械学習の大規模な運用に向けて最適化できます。アクセンチュアとデータブリックスは共に、エンタープライズにおけるデータのサイロ化の解消、アジャイルで適応性の高いプロセスの構築、データドリブンな意思決定による問題解決、新たな機会創出を可能にします。 アクセンチュアとデータブリックスのグローバルなパートナーシップは、両社が以前から共同でソリューションアクセラレータおよびソリューションを開発してきた実績に基づいています。私たちはさまざまな業界のお客様にこれらを提供し、機会創出を支援してきました。また

レイクハウスと Delta Lake の内部構造

September 10, 2020 Joel Minnick による投稿 in Databricks ブログ
Databricks は以前の ブログ で、企業におけるレイクハウス(LH)採用の増加状況について解説しました。このブログの内容は、技術系のオーディエンスから大きな反響がありました。多くの方がレイクハウスを次世代のデータアーキテクチャとして賞賛してくださったのですが、データレイクと何ら変わらないのではいうご意見もいただきました。そこで、Databricks のエンジニアと創業者が、データレイクとは一線を画すレイクハウスパラダイムを核とする技術的課題とソリューションについてのリサーチペーパー「Delta Lake: High-performance ACID Table Storage over Cloud Object Stores」(Delta Lake:クラウドオブジェクトストアによる高性能ACIDテーブルストレージ)を共同執筆しました。このペーパーは、大規模データベースの国際会議 VLDB2020 で受理、発表されました。リサーチペーパーの全文は こちら からダウンロードできます。 「もし私が顧客に何が欲し

データ分析と AI の活用で COVID-19 影響下の公衆衛生監視を改善

August 28, 2020 Mike Maxwell による投稿 in エンジニアリングのブログ
Databricks における公共セクター(州・地方政府)部門のリーダーである私は、米国の政府による新型コロナウイルスと COVID-19 の危機への取り組みを身近に見る機会があります。この危機に立ち向かい、命を救うために業務遂行している彼らの姿勢には常に敬服させられます。 暗いニュースが続く中、COVID-19 に関して公衆衛生機関がもたらした重要な 新たな成果の報告 もあります。米国疾病予防管理センター(CDC)をはじめとする公衆衛生部門による優れた活動は、あまりニュースの見出しになることはありませんが、実際は極めて素晴らしい成果を生み出しています。 私たちと同じように、地方自治体や州政府も、状況が変化するたびに一歩ずつ理解を深めています。早期に感染が発生した国で成功した COVID-19 対応プログラムを参考にし、公衆衛生機関はまず、重要なデータソースとして接触者の追跡の必要性を認識し、接触者追跡プログラムの実装を急ぎました。接触者追跡プログラムを導入したことで、膨大なデータが利用可能になりました。 世界的

カスタマーリテンション(顧客維持)による LTV の向上と最大化 – ML のハイパーパラメータで解約率を予測

顧客のロイヤルティや維持率が高い企業では、収益が同業他社に比べ 250% 早く成長 し、10 年間での株主利益率も 2 倍から5 倍に達します。顧客のロイヤルティを獲得し、定着数を最大にすることは、企業と顧客ベースの両方に多くの利益をもたらします。 ではなぜ多くの企業にとって顧客の維持が難しいのでしょうか?ARPU(顧客 1 人あたりの平均売上高)を指標とする通信会社などのサブスクリプションベースの企業以外は、顧客維持率の公式な開示を重視していない企業がほとんどです。企業では、顧客ではなく製品やサービスの機能面に重点を置き、顧客ロイヤルティはこれらの取り組みによって自然に向上するものと考えています。実際に、 ニールセンの 2020 年の調査結果 では、「企業のマーケティング目標の中で、顧客離脱・解約への対応の優先度は最下位」であることが明らかになっています。 多くの事実からも、顧客の消費行動が変化していることがわかっており、顧客維持は特に重要な課題です。 新型コロナウイルス感染症(COVID-19)による消費行動