Skip to main content

Security & Trust Center

Your data security is our priority




Our trusted platform is built by embedding security throughout the software development and delivery lifecycle. We follow rigorous operational security practices such as penetration testing, vulnerability assessments and strong internal access controls. We believe transparency is the key to winning trust — we publicly share how we operate, and work closely with our customers and partners to address their security needs. We have offerings for PCI-DSS, HIPAA and FedRAMP compliance, and we are ISO 27001, ISO 27017, ISO 27018 and SOC 2 Type II compliant.

Contractual commitment

Beyond the documentation and best practices that you will find in our Security and Trust Center, we also provide a contractual commitment to security written in plain language to all our customers. This commitment is captured in the Security Addendum of our customer agreement, which describes the security measures and practices that we follow to keep your data safe.

Vulnerability management

Detecting and quickly fixing vulnerable software that you rely on is among the most important responsibilities of any software or service provider. We take this responsibility seriously and share our remediation timeline commitments in our Security Addendum.

Internally, we have automated vulnerability management to effectively track, prioritize, coordinate and remediate vulnerabilities in our environment. We perform daily authenticated vulnerability scans of Databricks and third-party/open-source packages used by Databricks, along with static and dynamic code analysis (SAST and DAST) using trusted security scanning tools, before we promote new code or images to production. Databricks also employs third-party experts to analyze our public-facing sites and report potential risks.

Databricks has funded a Vulnerability Response Program for monitoring emerging vulnerabilities before they’re reported to us by our scanning vendors. We accomplish this using internal tools, social media, mailing lists and threat intelligence sources (e.g., US-CERT and other government, industry and open-source feeds). Databricks monitors open vulnerability platforms, such as Open CVDB. We have an established process for responding to these so we can quickly identify the impact on our company, product or customers. This program allows us to quickly reproduce reported vulnerabilities and resolve zero-day vulnerabilities.

Our Vulnerability Management Program is committed to treating Severity-0 vulnerabilities, such as zero days, with the highest urgency, prioritizing their fix above other rollouts.

Penetration testing and bug bounty

We perform penetration testing through a combination of our in-house offensive security team, qualified third-party penetration testers and a year-round public bug bounty program. We use a mixture of fuzzing, secure code review and dynamic application testing to evaluate the integrity of our platform and the security of our application. We conduct penetration tests on major releases, new services and security-sensitive features. The offensive security team works with our incident response team and security champions within engineering to resolve findings and infuse learnings throughout the company.

We typically perform 8-10 external third-party penetration tests and 15-20 internal penetration tests per year, and all material findings must be addressed before a test can be marked as passed. As part of our commitment to transparency, we publicly share our platform-wide third-party test report in our due diligence package.

Our public bug bounty program, facilitated by HackerOne, allows a global collective of cybersecurity researchers and penetration testers to test Databricks for security vulnerabilities. Some of the key decisions we’ve made to make the program successful include:

  • Encouraging an engaged community of hackers to be active on our program by providing transparency to our HackerOne program statistics such as response rate and payouts
  • Promptly responding to bug bounty submissions, with an average time-to-bounty under a week
  • Performing variant analysis on every valid submission to identify alternative ways that an exploit may be used, and verifying 100% of fixes
  • Adding bonuses that drive attention to the most important areas of the product

We work hard to make our program successful and to learn from each submission. Our open and collaborative approach to our bug bounty program has resulted in over 100 security researchers being thanked for over 200 reports. Thank you all for helping us keep Databricks secure!

We want our customers to have confidence in the workloads they run on Databricks. If your team would like to run a vulnerability scan or penetration test against Databricks, we encourage you to:

  1. Run vulnerability scans on data plane systems located inside of your cloud service provider account.
  2. Run tests against your code, provided that those tests are entirely contained within the data plane (or other systems) located in your cloud service provider account and are evaluating your controls.
  3. Join the Databricks Bug Bounty program to access a dedicated deployment of Databricks to perform penetration tests. Any penetration test against our multi-tenant control plane requires participation in the program.

Security investigations and incident response

We use Databricks as our SIEM and XDR platform to process over 9 terabytes of data per day for detection and security investigations. We ingest and process logs and security signals from cloud infrastructure, devices, identity management systems, and SaaS applications. We use structured streaming pipelines and Delta Live Tables to identify the most relevant security events using a data-driven approach and statistical ML models to generate novel alerts, or to correlate, de-duplicate and prioritize existing alerts from known security products. We model our runbooks on adversary tactics, techniques and procedures (TTP) tracked using the MITRE ATT&CK framework. Our security investigations team uses collaborative Databricks notebooks to create repeatable investigation processes, continually evolve incident investigation playbooks, and perform threat hunting against more than 2 petabytes of historic event logs handling complex searches over unstructured and semi-structured data.

Our incident response team stays up to date and helps Databricks prepare for incident management scenarios by:

  • Participating in industry-reputed courses from vendors like SANS and attending security conferences like fwd:cloudsec, Black Hat, BSides, RSA
  • Performing regular tabletop exercises with executive leadership and internal teams to practice security response scenarios relevant to Databricks products and corporate infrastructure
  • Collaborating with engineering teams to prioritize platform observability to allow effective security detection and response
  • Regularly updating hiring and training strategies based on an evolving incident response skills and capabilities matrix

Internal access

We apply strict policies and controls to internal employee access to our production systems, customer environments and customer data.

We require multifactor authentication to access core infrastructure consoles such as the cloud service provider consoles (AWS, GCP and Azure). Databricks has policies and procedures to avoid the use of explicit credentials, such as passwords or API keys, wherever possible. For example, only appointed security team members can process exception requests for new AWS IAM principals or policies.

Databricks employees can access the production system under very specific circumstances (such as emergency break-fix). Access is governed by a Databricks-built system that validates access and performs policy checks. Access requires that employees are connected to our VPN, and authenticate using our single sign-on solution with multifactor authentication.
Learn more

Our internal security standards call for the separation of duties wherever possible. For example, we centralize our cloud identity provider’s authentication and authorization process to separate authorizing access (Mary should access a system) from granting access (Mary can now access a system).

We prioritize least privilege access, both in internal systems and for our access to production systems. Least privilege is explicitly built into our internal policies and reflected in our procedures. For example, most customers can control whether Databricks employees have access to their workspace, and we programmatically apply numerous checks before access can be granted and automatically revoke access after a limited time.
Learn more

Secure software development lifecycle

Databricks has a software development lifecycle (SDLC) that builds security into all design, development and production steps — from feature requests to production monitoring — supported by tooling designed to trace a feature through the lifecycle. We have automatic security scanning and automated vulnerability tracking of systems, libraries and code.

Databricks leverages an Ideas Portal that tracks feature requests and allows voting both for customers and employees. Our feature design process includes privacy and security by design. After an initial assessment, high-impact features are subject to a security design review from the product security team in association with the security champions from engineering, along with threat modeling and other security-specific checks.

We use an agile development methodology that breaks up new features into multiple sprints. Databricks does not outsource the development of the Databricks platform, and all developers are required to go through secure software development training — including the OWASP Top 10 — when hired and annually thereafter. Production data and environments are separated from development, QA and staging environments. All code is checked into a source control system that requires single sign-on with multifactor authentication and granular permissions. Code merges require approval from the functional engineering owners of each area impacted, and all code is peer reviewed. The product security team manually reviews security-sensitive code to eliminate business logic errors.

We use best-of-breed tools to identify vulnerable packages or code. Automation in a preproduction environment runs authenticated host and container vulnerability scans of the operating system and installed packages, along with dynamic and static code analysis scans. Engineering tickets are created automatically for any vulnerabilities and assigned to relevant teams. The product security team also triages critical vulnerabilities to assess their severity in the Databricks architecture.

We run quality checks (such as unit tests and end-to-end tests) at multiple stages of the SDLC process, including at code merge, after code merge, at release and in production. Our testing includes positive tests, regression tests and negative tests. Once deployed, we have extensive monitoring to identify faults, and users can get alerts about system availability via the Status Page. In the event of any P0 or P1 issue, Databricks automation triggers a “5 whys” root cause analysis methodology that selects a member of the postmortem team to oversee the review. Findings are communicated to executive leadership, and follow-up items are tracked.

Databricks has a formal release management process that includes a formal go/no-go decision before releasing code. Changes go through testing designed to avoid regressions and validate that new functionality has been tested on realistic workloads. Additionally, there is a staged rollout with monitoring to identify issues early. To implement separation of duties, only our deployment management system can release changes to production, and multiperson approval is required for all deployments.

We follow an immutable infrastructure model, where systems are replaced rather than patched to improve reliability and security and to avoid the risk of configuration drift. When new system images or application code is launched, we transfer workloads to new instances that launch with the new code. This is true both for the control plane and the data plane (see the Security Features section for more on the Databricks architecture). Once code is in production, a verification process confirms that artifacts are not added, removed or changed without authorization.

The final phase of the SDLC process is creating customer-facing documentation. Databricks docs are managed much like our source code, and documentation is stored within the same source control system. Significant changes require both technical and docs team review before they can be merged and published.
Visit documentation

Security Policy and Communication Details

Databricks follows RFC 9116, ISO/IEC 30111:2019(E), and ISO/IEC 29147:2018(E) standards for security vulnerability handling and communications. For details on our secure communications and PGP signature, please refer to our security.txt file.